UNIT I1

TREE STRUCTURES

What are trees?

Tree is a hierarchical data structure which stores the information naturally in the form of
hierarchy style without any closed region.
¢ Tree is one of the most powerful and advanced data structures.

¢ [tis a non-linear data structure compared to arrays, linked lists, stack and queue.
¢ [t represents the nodes connected by edges.

Subtree

Parent
Mode

Fig. Structure of Tree

e The above figure represents structure of a tree. A is a parent of B and C. B is called a
child of A and also parent of D, E, F

¢ Tree is a collection of elements called Nodes, where each node can have arbitrary number
of children.

Example

TREE with 11 nodes and 10 edges

0 G - In any tree with ‘N’ nodes there
will be maximum of ‘N-1’ edges

0 e o @ 0 - In a tree every individual
element is called as ‘NODE’
OO ®



Tree Terminology

¢ Tree Terminologies are
0 Root

edge

parent

child

sibling

internal nodes

degree

height

depth

levels
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1. Root
¢ In atree data structure, the first node is called as Root Node.
e Every tree must have a root node.
e We can say that the root node is the origin of the tree data structure.
e In any tree, there must be only one root node.
e We never have multiple root nodes in a tree.

®

Here ‘A’ is the ‘root’ node

- In any tree the first node is
called as ROOT node

2. Edge

¢ In a tree data structure, the connecting link between any two nodes is called as EDGE. In
a tree with 'N' number of nodes there will be a maximum of 'N-1' number of edges.

- In any tree, ‘Edge’ is a connecting
link between two nodes.




3. Parent

* The node which has a branch from it to any other node is called as a parent node.
¢ In other words, the node which has one or more children is called as a parent node.
¢ Inatree, a parent node can have any number of child nodes.

()

Here A, B, C, E & G are Parent nodes

e 0 - In any tree the node which has
child / children is called ‘Parent’

G @ - A node which is predecessor of
any other node is called ‘Parent’

4. Child
e The node which is a descendant of some node is called as a child node.

¢ All the nodes except root node are child nodes.

0 Here B & C are Children of A
Here G & H are Children of C

(B) (C) Here K is Child of G
- descendant of any node is called
0 e 0 @ 0 as CHILD Node
ONOENO

5. Siblings

® Nodes which belong to the same parent are called as siblings.
* In other words, nodes with the same parent are sibling nodes.

Here are Siblings
Here D E & F are Siblings
Here are Siblings

Here | & J are Siblings

- In any tree the nodes which has
same Parent are called ‘Siblings’

- The children of a Parent are
called ‘Siblings’




6. Leaf Node

¢ The node which does not have any child is called as a leaf node.

e Leaf nodes are also called as external nodes or terminal nodes.

Here D, |, ], F, K & H are Leaf nodes

- In any tree the node which does
not have children is called ‘Leaf’

@ ® ® - A node without successors is
called a ‘leaf’ node

7. Internal Node

¢ The node which has at least one child is called as an internal node.
e Internal nodes are also called as non-terminal nodes.
¢ Every non-leaf node is an internal node.

0 Here A, B, C, E & G are Internal nodes

- In any tree the node which has atleast
0 0 one child is called ‘Internal’ node

- Every non-leaf node is called

G @ as ‘Internal’ node

8. Degree-

® Degree of a node is the total number of children of that node.
¢ Degree of a tree is the highest degree of a node among all the nodes in the tree.
® in this example highest degree of a node is B is 3



(A) Here Degree of B is 3
Here Degree of Aiis 2

e 0 Here Degree of Fis 0
- In any tree, ‘Degree’ of a node is total
number of children it has.
ONONGEOEN(G
» Q0 «

9. Level

e Inatree, each step from top to bottom is called as level of a tree.
¢ The level count starts with 0 and increments by 1 at each level or step.

(A) Level 0

(B) ) =
OO @
OO &

10. Height-

e Total number of edges that lies on the longest path from any leaf node to a particular
node is called as height of that node.

» Height of a tree is the height of root node.

e Height of all leaf nodes = 0

Here Height of tree is 3

- In any tree, ‘Height of Node’ is
total number of Edges from leaf
to that node in longest path.

- In any tree, ‘Height of Tree’ is
the height of the root node.

Heightis 0

11. Depth



Total number of edges from root node to a particular node is called as depth of that

node.
Depth of a tree is the total number of edges from root node to a leaf node in the longest

path.
Depth of the root node = 0
The terms “level” and “depth” are used interchangeably.

Here Depth of tree is 3

- In any tree, ‘Depth of Node' is
total number of Edges from root
to that node.

- In any tree, ‘Depth of Tree’ is
total number of edges from root
to leaf in the longest path.

Dei)th is 3
12. Path

¢ In atree data structure, the sequence of Nodes and Edges from one node to another node

is called as PATH between that two Nodes
¢ Length of a Path is total number of nodes in that path.
¢ In below example the path A - B - E - J has length 4.

- In any tree, ‘Path’ is a sequence
of nodes and edges between two
nodes.

Here, ‘Path’ between A & J is
A-B-E-)J

Here, ‘Path’ between C & K is
C-G-K

13._Subtree-

e Inatree, each child from a node forms a subtree recursively.
e Every child node forms a subtree on its parent node.



Subtree
Subtree

Binary Tree

* In a normal tree, every node can have any number of children.

e A binary tree is a special type of tree data structure in which
every node can have a maximum of 2 children. One is known as a
left child and the other is known as right child.

“A tree in which every node can have a maximum of two
children is called Binary Tree”.

* In abinary tree, every node can have either O children or 1 child or
2 children but not more than 2 children.
* Binary tree node declarations:
struct Tnode
{
int element;
struct Tnode *left;
struct Tnode *right;

b

Example
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Binary Tree

General Tree

Types of Binary Trees

Binary trees can be of the following types-

Full / Strictly
Binary Tree

Rooted
Binary Tree

Complete / Perfect
Binary Tree

Types of Binary Tree

Skewed
Binary Tree

Almost Complete
Binary Tree

1. Rooted Binary Tree



Full / Strictly Binary Tree
Complete / Perfect Binary Tree
Almost Complete Binary Tree
Skewed Binary Tree

i

1. Rooted Binary Tree-

A rooted binary tree is a binary tree that satisfies the following 2
properties-

. It has a root node.

. Each node has at most 2 children.

Example-

/\ Root Node

Rooted Binary Tree

2. Full / Strictly Binary Tree-

| A binary tree in which every node has either 0 or 2 children is
called as a Full binary tree.

| Full binary tree is also called as Strictly binary tree.



Example-

Here,

| First binary tree is not a full binary tree.
| This is because node C has only 1 child.

3. Complete / Perfect Binary Tree-

A complete binary tree is a binary tree that satisfies the following 2

properties-
. Every internal node has exactly 2 children.
o All the leaf nodes are at the same level.

Complete binary tree is also called as Perfect binary tree.

Example-



Here,

o First binary tree is not a complete binary tree.
° This is because all the leaf nodes are not at the same level.

4. Almost Complete Binary Tree-

An almost complete binary tree is a binary tree that satisfies the
following 2 properties-

o All the levels are completely filled except possibly the last level.
| The last level must be strictly filled from left to right.

Example-



Here,

o First binary tree is not an almost complete binary tree.
o This is because the last level is not filled from left to right.

5. Skewed Binary Tree-

A skewed binary tree is a binary tree that satisfies the following 2

properties-
o All the nodes except one node has one and only one child.
o The remaining node has no child.

OR

A skewed binary tree is a binary tree of n nodes such that its depth is
(n-1).

Example-



Left Skewed Binary Tree Right Skewed Binary Tree

Binary Tree Representations

A binary tree data structure is represented using two methods. Those
methods are as follows...

1. Array Representation
2. Linked List Representation

Array Representation

e In array representation of a binary tree, we use one-dimensional
array (1-D Array) to represent a binary tree.

for any element in position i=1

left child is in position 2i

right child is in position 2i+1

parent is in position i/2

Steps:

1. Convert given binary tree into complete binary tree by adding empty
node.

2. Give the index of the every node from root to leaf.



3. Size of the array is equal to No. of node in the CBT.

Example:

1. Convert given binary tree into complete binary tree by adding empty
node.

2. Give the index of the every node from root to leaf.



Size of the array =15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
lA/B|C|D|F|G|H|I [J[-]-]-[K]-][-]

Linked List Representation of Binary Tree

® We use a double linked list to represent a binary tree. In a double
linked list, every node consists of three fields.

e First field for storing left child address, second for storing actual
data and third for storing right child address.

® In this linked list representation, a node has the following
structure...

Left Child
Address

Right Child

Data ddress

The above example of the binary tree represented using Linked list
representation is shown as follows...



x|

NULL

/ D \ NULL F NULL NULL \ NULL

NULL

I NULL NULL J NULL NULL K NULL

Tree Applications

Binary Search Trees(BSTs) are used to quickly check whether an element is
present in a set or not.

Heap is a kind of tree that is used for heap sort.

A modified version of a tree called Tries is used in modern routers to store
routing information.

Most popular databases use B-Trees and B+-Trees, which are variants of the
tree structure we learned above to store their data

Compilers use a syntax tree to validate the syntax of every program you
write.

Example:

Calculate the no of nodes with binary tree of height 2.



 binary tree of height h has 2"'-1 nodes
e Here height is 2
e therefore No.of nodes in complete binary tree is=2*"'-1

=7 nodes.

Tree Traversals

* Traversing means visiting each nodes only ones.
e Tree Traversals is a method for visiting all the nodes in the tree exactly once.
¢ all nodes are connected via edges (links) we always start from the
root (head) node.
¢ That is, we cannot randomly access a node in a tree.
¢ There are three types of tree traversals
1. In-order Traversal
2. Pre-order Traversal
3. Post-order Traversal

In-order Traversal (L r R)

In this traversal method,



e First, visit all the nodes in the left subtree
¢ Then the root node
* Visit all the nodes in the right subtree

Preorder traversal(rLR)

¢ Visit root node
e Visit all the nodes in the left subtree
¢ Visit all the nodes in the right subtree

Postorder traversal(LRr)

¢ Visit all the nodes in the left subtree
¢ Visit all the nodes in the right subtree
¢ Visit the root node

Example:1

Inorder: ABC ( LrR)
Preorder: BAC (rL R)
Postorder: ACB (L Rr)

Example: 2
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Recursive routine for inorder traversal:

void inorder(node *T)
{

if (T!=null)

{

inorder(T->left);
printf(“%d”, T->data);
inorder(T->right);

}

Recursive routine for preorder traversal:

void preorder(node *T)

{

if (T!=null)

{

printf(“%d”, T->data);
preorder(T->left);
preorder(T->right);

}

Recursive routine for postorder traversal:

void postorder(node *T)
{

if (T!=null)

{

postorder(T->left);
postorder(T->right);
printf(“%d”, T->data);

}



Other example

1. Traverse the given tree using inorder, preorder and post order

INORDER(LrR): DBAECF
PRE ORDER (rLR): ABDCEF

POST ORDER(LRYr): DB EFCA

2. Traverse the given tree using inorder, preorder and post order

*

7N
_ A/ \ B

g %
§ e

INORDER: A+B*C-D/E
PREORDER: *+AB-C/DE
POST ORDER: AB+CDE/-*



3. Traverse the given tree using inorder, preorder and post order

DBEACG ABDECG DEBGCA

4. Traverse the given tree using inorder, preorder and post order

794251368
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Expression tree

Expression Tree is used to represent expressions and one of the
applications of tree.

Expression Tree is a binary tree in which the leaf nodes are
operands and the internal nodes are operators. Like binary
tree, expression tree can also be traversed by inorder, preorder
and postorder

Example: a-+b*c

AI ( ) R-L
*,/ L-R
+, -  L-

()
@
5 1

Infix: a+b*c
prefix : +a*bc
postfix: abc*+

Expression Tree is a special kind of binary tree with the following
properties:

o Each leafis an operand. Examples: a, b, ¢, 6, 100

PaN

o The root and internal nodes are operators. Examples: +, -, *, /,

0 Subtrees are subexpressions with the root being an operator.
An expression and expression tree shown below

a+(b*c)+d*(e+f)
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Construction of Expression Tree

We consider that a postfix expression is given as an input for constructing an

expression tree. Following are the step to construct an expression tree:

1. Read one symbol at a time from the postfix expression.

2. Check if the symbol is an operand or operator.

3. If the symbol is an operand, create a one node tree and pushed a pointer onto a
stack

4. If the symbol is an operator, pop two pointer from the stack namely T, & T, and
form a new tree with root as the operator, T, as a left and T, as right child

5. A pointer to this new tree is pushed onto the stack
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Other example:(H.W)

1. ab+c*
2.12%c+

3. ab+tcde+**

Binary Search Tree
® Binary Search tree can be defined as a class of binary trees, in which the nodes
are arranged in a specific order. This is also called ordered binary tree.

* Ina binary search tree, the value of all the nodes in the left sub-tree is less than
the value of the root.

¢ Similarly, value of all the nodes in the right sub-tree is greater than or equal to
the value of the root.

¢ This rule will be recursively applied to all the left and right sub-trees of the root.

NOTE:

1. Every binary search tree is a binary tree.

2. All binary trees need not be a binary search tree.

Root Node

N
+/ P A

u:f 75 )

\J

Binary Search Tree



Advantages of using binary search tree

1. Searching become very efficient in a binary search tree since, we get a hint at
each step, about which sub-tree contains the desired element.

2. The binary search tree is considered as efficient data structure in compare to
arrays and linked lists. In searching process, it removes half sub-tree at every
step.

3. It also speed up the insertion and deletion operations as compare to that in array
and linked list.

Comparision Between Binary Tree & Binary Search Tree

Binary Tree Binary Search Tree
* A tree is said to be a binary * A binary search tree is a binary tree i S8
tree if it has atmost two childrens. the key values in the left node is less Sam S

root and the keyvalues in the right node =
greater than the root.

* It doesn’t have any order.

* Example
o ‘ (4)

1. Create the binary search tree using the following data elements.

43, 10, 79, 90, 12, 54, 11, 9, 50

1. Insert 43 into the tree as the root of the tree.
2. Read the next element, if it is lesser than the root node element, insert it as the root of the left sub-tree.

3. Otherwise, insert it as the root of the right of the right sub-tree.

The process of creating BST by using the given elements, is shown in the image below.



Step 1 Step 2 Step 3 Step 4
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Binary search Tree Creation

Other example: HW
1.7,2,9,0,5,6,8,1

2.10,3,15,22,6,45,65,23,78,34,5



Binary Search Tree

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-
mentioned properties -

The value of the key of the left sub-tree is less than the value of its parent (root)
node's key.

The value of the key of the right sub-tree is greater than or equal to the value of
its parent (root) node's key.

Thus, BST divides all its sub-trees into two segments; the left sub-tree and the
right sub-tree and can be defined as

Basic Operations:

1. Insertion

2. Deletion

3. Find

4. Find max

5. Find min

6. Make empty

Declaration of binary search tree:

Define a node having some data, references to its left and right child nodes.
struct node {
int data;
struct node *leftChild;
struct node *rightChild;

} struct node *root=null;



LEFT DATA RIGHT

20

Fa N,

VAR

30

L =4

Insert Operation

e Whenever an element is to be inserted, first locate its proper location.
e Start searching from the root node, then if the data is less than the key
value, search for the empty location in the left subtree and insert the data.

e Otherwise, search for the empty location in the right subtree and insert the

data.

35




void insert(int d)
{
struct node * temp *current,* parent;
struct node *temp = (struct node*) malloc(sizeof(struct node));
temp->data =d;
temp->left = NULL;
temp->right = NULL;
if(root == NULL) //if tree is empty
{
root = temp;
}
else
{
current = root;
while(current)

{
parent = current;
if(temp->data > current->data) //go to RIGHT of the tree
{
current = current->right;
}
else //go to LEFT of the tree
{
current = current->left;
}
if ( temp->data > parent->data)
{
parent ->right=temp;
}
else
{
parent->left=temp;
}









FIND OPERATION: (SEARCH)

LEFT DATA RIGHT

20

i N,

Z N\

/ v N
X5 X X258 X [X]35|X

e Whenever an element is to be searched, start searching from the root
node.

¢ Then if the data is less than the key value, search for the element in the left
subtree.

e Otherwise, search for the element in the right subtree. Follow the same
algorithm for each node.

struct node* find(int data)
{

struct node *current = root;
while(current!= NULL)

{ 35=35
if(data == Current->data)
{
return (current)
} 35>35
if(data > current->data)
{
current = current->right;
}
else
{

current = current->left;

}



}

return current;

}

Find minimum

e Whenever an smallest element is to be searched, start searching from the
root node.

¢ Then if the data is less than the key value, find for the element in the left
subtree.

¢ This stopping point is smallest data.

struct node* find(int data)
{

struct node *current = root;
while(current!=null)

{

if(current->left!=null)

{

current=current->left;

}

return(current)

}

Find maximum

e Whenever an largest element is to be searched, start searching from the
root node.

¢ Then if the data is greater than the key value, find for the element in the
right subtree.

¢ This stopping point is smallest data.

struct node* find(int data)

{

struct node *current = root;
while(current!=null)

{

if(current->right!=null)

{

current=current->right;

}

return(current)

}



Make empty
¢ Delete every node of the tree.
¢ |t also release memory occurred on the node.

makeempty(node *T)
if(T'=null)

{

makeempty(T->left);
makeempty(T->right);
free(T);

}

return(null)

}

}
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Applications of binary search trees.
e Used to efficiently store data in sorted form in order to access and search
stored elements quickly.
® They can be used to represent arithmetic expressions
e BST used in Unix kernels for managing a set of virtual memory areas
(VMAS).
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